2024 (ongoing)

109. Farber G, Dong Y, Wang Q, Rathod M, Wang H, Dixit M, Keepers B, Xie Y, Butz K, Polacheck WJ, Liu J, Qian L (2024) Direct conversion of cardiac fibroblast into endothelial-like cells using Sox17 and Erg. Nat Commun 15, 4170 (2024).

108. Takasugi P and Qian L. (2024) Differentiating the Human Heart: A Focus on Atrioventricular Canal Cardiomyocytes. Cell Reports 43(4):114085. doi: 10.1016/j.celrep.2024.114085. Epub 2024 Apr 10.

107. Dong Y., Yang Y., Wang H., Feng D., Nist E., Yapundich N., Craft M., Qian L and Liu J (2024) Single-cell chromatin accessibility profiling identifies intrinsic genetic program that activates transient pro-regenerative cell states of major non-myocyte cell types. Science Advances 10, eadk4694. DOI: 10.1126/sciadv.adk 4694

106. Garbutt TA, Wang Z, Wang H, Ma H, Ruan H, Dong Y, Xie Y, Tan L, Phookan R, Stouffer J, Vedantham V, Yang Y#, Qian L#, and Liu J# (2024) Epigenetic regulation of cardiomyocyte maturation by arginine methyltransferase Carm1. Circulation 2024 Jan 15. doi: 10.1161/CIRCULATIONAHA.121.055738. Online ahead of print.

105. Fang J, Yang Q, Maas RGC, Buono M, Meijlink B, Bruinenberg DL, Benavente ED, Mokry M, van Mil A, Qian L, Goumans MJ, Schiffelers R, Lei Z, Sluijter JPG (2024) Vitamin C facilitates direct cardiac reprogramming by inhibiting reactive oxygen species. Stem Cell Res Ther 15, 19 (2024).


104. Xie Y, Van Handel B, Qian L and Ardehali R (2023) Recent advances and future prospects in direct cardiac reprogramming. Nat Cardiovasc Res 2, 1148–1158

103. Xie Y, Wang Q, Yang Y, Near D, Wang H, Colon M, Slattery C, Nguyen C, Keepers B, Farber G, Wang T-W, Lee S-H, Shih YYI, Liu J and Qian L. (2023) Translational landscape of direct cardiac reprogramming reveals a role of Ybx1 in repressing cardiac fate acquisition. Nat Cardiovasc Res 2, 1060–1077

102. Spurlock B, Liu J and Qian L (2023) Can We Stop One Heart from Breaking: Triumphs and Challenges in Cardiac Reprogramming. Opin. Genet. Dev. 83, 102116.doi: 10.1016/j.gde.2023.102116.

101. Wang Q, Spurlock B, Liu J and Qian L. (2023) Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl Sci Sep 21, 2023. Epublished DOI: 10.1016/j.jacbts.2023. 06.012

100. Spurlock B. and Qian L. (2023) Tracing the history of a heart. eLife 2023;12:e89988 DOI:

99. Qian L. and Pereira C-F (2023) At the Heart of In Vivo Reprogramming–An Interview with Dr. Li Qian. Cellular Reprogramming 25 (3)

98. Qian L., Zhou B. and Yang H-T (2023) Editorial: Cardiomyocyte proliferation and reprogramming for cardiac regeneration. J Mol Cell Cardiol. 179:1.doi: 10.1016/j.yjmcc.2023.03.014. Epub 2023 Apr 3.

97. Wang H., Keepers B., Liu J. and Qian L. (2023) Optimized protocol for direct cardiac reprogramming in mice using Ascl1 and Mef2c. STAR Protocols. 4(2):102204.doi: 10.1016/j.xpro.2023.102204

96. Missinato M.A., Murphy S., Lynott M., Yu M.S., Kervadec A., Chang Y-L., Kannan S., Loreti M., Lee C., Amatya P., Tanaka H., Huang C-T., Puri P.L., Kwon C., Adams P.D., Qian L., Sacco A., Andersen P, Colas A.R. (2023) Conserved Transcription Factors Promote Cell Fate Stability and Restrict Reprogramming Potential in Differentiated Cells. Nat Commun. 14(1):1709. doi: 10.1038/s41467-023-37256-8.

95. Yang H-T, Zhou B. and Qian L. (2023) Editorial: Introduction to the special issue on stem cells and their products for cardiac repair and regeneration. J Mol Cell Cardiol. 176, 97.doi:10.1016/j.yjmcc.2023.01.012.

94. Takasugi P. and Qian L. (2023). Exploring the Inner Workings of Direct Cardiac Reprogramming. Current Cardiology Reports 25 (6), 467-472.


93. Jasiewicz N.E., Mei K-C, Oh H.M., Chansoria P., Hendy D.A., Bonacquisti E.E., Bachelder E.M., Ainslie K.M. Yin H., Qian L., Jensen B.C., Nguyen J.(2022) ZipperCells Exhibit Enhanced Accumulation and Retention at the Site of Myocardial Infarction. Adv Healthc Mater. 2022 Nov 9; doi: 10.1002/adhm.202201094. Online ahead of print.

92. Wang H.*, Keepers B.*, Qian Y., Xie Y., Colon M., Liu J. and Qian L. (2022) Cross-lineage Potential of Ascl1 Uncovered by Comparing Diverse Reprogramming Regulatomes Cell Stem Cell 29 (10), 1491-1504

91. Ricketts S. and Qian L. (2022) The heart of cardiac reprogramming: the cardiac fibroblasts. J Mol Cell Cardiol. 172, 90-99

90. Lancaster M. Morris S.A., Takebe T., Qian L., Gao S., Huch M. (2022) Anniversary reflections: Inspiring discoveries and the future of the field. Cell Stem Cell 29 (6) 879-881

89. Harris N.R., Nielsen N.R., Pawlak J.B., Aghajanian A., Rangarajan K., Serafin D.S., Farber G., Dy D.M., Nelson-Maney N.P., Xu W., Ratra D., Hurr S.H., Qian L., Scallan J. and Caron K.M. (2022) VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circulation Research 130, 5-23

88. Farber G., Liu J., Qian L. (2022) OSKM-mediated reversible reprogramming of cardiomyocytes regenerates injured myocardium. Cell Regeneration 11, Article number: 6 (2022)

87. Xie Y., Liu J., Qian L. (2022). Direct cardiac reprogramming comes of age: recent advance and remaining challenges. Seminars in Cell and Developmental Biology. 122, 37-43

86. Wang H., Yang Y., Qian Y., Liu J. and Qian L. (2022) Delineating Chromatin Accessibility Re-patterning at Single Cell Level during Early Stage of Direct Cardiac Reprogramming. J Mol Cell Cardiol. 162, 62-71


85. Ma H., Liu Z., Yang Y., Feng D., Dong Y., Garbutt T.A., Hu Z., Wang L., Luan C., Cooper C.D., Li Y., Welch J.D.#, Qian L.#, Liu J# (2021). Functional coordination of non-myocytes plays a key role in in de novo heart regeneration. EMBO Rep. 2021 Nov 4;22(11):e52901.doi: 10.15252/embr.202152901. Epub 2021 Sep 15.

84. Li G., Luan C., Dong Y., Xie Y., Zentz S., Zelt R., Roach J., Liu J., Qian L., Li Y., Yang Y. (2021) ExpressHeart: Web Portal to Visualize Transcriptome Profiles of Non-Cardiomyocyte Cells. Int J Mol Sci. 22(16), 8943.

83. Zhang M., Qian L., Liu C., Huang G.N., Tao G. (2021) Cardiomyocyte Maturation-Novel Insights for Regenerative Medicine. Front. Cell Dev. Biol. doi: 10.3389/fcell.2021. 730622

82.Wang L.*, Yang Y.*, Ma H., Xu J., Near D., Wang H., Garbutt T., Hu Z., Li Y., Liu J. and Qian L. (2020) Single cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovascular Research 2021 Apr 11:cvab134,

81. Jiang W., Yang Y., Mercer-Smith A., Valdivia A., Bago J.R., Woodell A.S., Burckley A., Marand M., Qian L., Anders C.K., Hingtgen S. (2021) Development of Next-generation Tumor-homing Induced Neural Stem Cells to Enhance Treatment of Metastatic Cancers. Science Advances 09 Jun 2021:Vol. 7, no. 24, eabf1526. DOI: 10.1126/sciadv.abf1526

80. Dong Y., Qian L., Liu J. (2021). Molecular and cellular basis of cardiac chamber maturation. Seminars in Cell and Developmental Biology. 118, 144-149

79. Tang Y., Zhao L., Yu X., Zhang J., Qian L., Jin J., Lu R. and Zhou Y. (2021) Inhibition of EZH2 Primes the Cardiac Gene Activation via Removal of Epigenetic Repression during Human Direct Cardiac Reprogramming Stem Cell Research 2021 May;53:102365.doi: 10.1016/j.scr.2021.102365

78. Yang, Y., Li, G., Xie, Y., Wang, L., Lagler, T., Yang, Y., Liu, J., Qian, L.#, Li, Y#. (2021) iSMNN: Batch Effect Correction for Single-cell RNA-seq data via Iterative Supervised Mutual Nearest Neighbor Refinement. Briefings in Bioinformatics 2021 Apr 12;bbab122. doi: 10.1093/bib/bbab122. Online ahead of print.

77. Wang H., Yang Y., Liu J. and Qian L. (2021) Direct Cell Reprogramming: approaches and mechanisms. Nat Rev Mol Cell Biol. 22, 410–424


76. Wang L., Ma H., Huang P., Xie Y., Near D., Wang H., Xu J., Yang Y., Xu Y., Garbutt T., Zhou Y., Liu Z., Yin C., Bressan M., Taylor J.M., Liu J. and Qian L. (2020) Downregulation of Beclin1 promotes direct cardiac reprogramming. Sci Transl Med. Oct 21;12(566):eaay7856. doi: 10.1126/scitranslmed.aay7856

75. Farber G. and Qian L. (2020) Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities. Current Cardiology Reports. 22(8):54, DOI: 10.1007/s11886-020-01322-0, PMID: 32562156

74. Xu J., Wang L, Liu J. and Qian L. (2020) In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-like Cells. Cardiac Regeneration: Methods and Protocols, Methods in Molecular Biology, vol. 2158, Kenneth Poss and Bernhard Ku¨ hn (eds.), p 155-170

73. Wang L.*, Huang P.*, Near D., Ravi K., Xu Y., Liu J., and Qian L. (2020) Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming. Cells. 2020 Jan 22;9(2). pii: E268. doi: 10.3390/cells9020268

72. Garbutt T.A.*, Zhou Y.*#, Keepers B., Liu J. and Qian L.# (2020) An Optimized Protocol for Human Direct Cardiac Reprogramming. STAR Protocols.Online Feb 7, 2020; DOI: 10.1016/j.xpro.2019.100010

71. Garbutt T.A., Liu J. and Qian L. (2020) Heart Regeneration Using Somatic Cells. In: Emerging Technologies for Heart Diseases (Udi Nussinovitch ed) Elsevier Publishing Group. p.259-283


70. Advice from Cell Press Reviewers. Cell. 2019 Sep 19;179(1):40-45. doi: 10.1016/j.cell.2019.08.044. Epub 2019 Sep 13. PubMed PMID: 31526487.

69. Zhou Y.*, Liu Z.*, Welch J.D., Gao X., Wang L., Garbutt T., Keepers B., Ma H., Prins J.F., Shen W., Liu J. and Qian L. (2019) Singe cell transcriptomic analyses of cell fate transitions during human cardiac reprogramming. Cell Stem Cell.25(1): 149-164.E9

68. Huang P., Wang L., Li Q., Tian X., Xu J., Xu J., Xiong Y., Chen G., Qian H., Jin C., Yu Y., Cheng K., Qian L. #, Yang Y. # (2019) Atorvastatin Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells Derived Exosomes in Acute Myocardial Infarction via Up-regulating Long Non-coding RNA H19. Cardiovascular Research. cvz139,

67. Xu J., Xiong Y-Y., Li Q., Hu M-J., Huang P-S., Xu J-Y., Tian X-Q., Jin C., Liu J., Qian L.#, Yang Y.# (2019) Optimization of Timing and Times for Administration of Atorvastatin-pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med.  2019 Jun 27. doi: 10.1002/sctm.19-0013. [Epub ahead of print]

66. Tian X-Q., Yang Y-J., Li Q., Xu J., Huang P-S., Xiong Y-Y., Li X-D., Jin C., Qi K., Jiang L-P., Chen G-H., Qian L., Liu J., Geng Y-J. (2019) Combined therapy with atorvastatin and atorvastatin-pretreated mesenchymal stem cells enhances cardiac performance after acute myocardial infarction by activating SDF-1/CXCR4 axis. Am J Transl Res. 11(7):4214-4231

65. Huang P., Wang L., Li Q., Xu J., Xu J., Xiong Y., Chen G., Qian H., Jin C., Yu Y., Liu J., Qian L. #, Yang Y# (2019) Combinatorial Treatment of Acute Myocardial Infarction Using Stem Cells and Their Derived Exosomes Resulted in Improved Heart Performance. Stem Cell Research & Therapy. 10(1):300. doi: 10.1186/s13287-019-1353-3.

64. Keepers B., Liu J. and Qian L. (2019) What’s in a cardiomyocyte – And how do we make one through reprogramming? Biochim Biophys Acta Mol Cell Res. pii: S0167-4889(18)30396-3. doi: 10.1016/j.bbamcr.2019.03.011. [Epub ahead of print]

63. Ma H, Yu S, Liu X, Zhang Y, Fakadej T, Liu Z, Yin C, Shen W, Locasale JW, Taylor J, Qian L#, Liu J#. (2019). Lin28a regulates pathological cardiac hypertrophic growth through Pck2-mediated enhancement of anabolic synthesis. Circulation. 139, 1725-1740

62. Zhou Y., Liu J. and Qian L. (2019) Epigenomic Reprogramming in Cardiovascular Disease. In: Computational Epigenetics and Diseases (Volumn 9 in Translational Epigenetics, Loo Keat Wei ed) Elsevier. p149-163


61. Su T., Huang K., Ma H., Liang H., Dinh P.U., Chen J., Shen D., Allen T.A., Qiao L., Li Z., Hu S., Cores J., Frame B.N., Young A.T., Yin Q., Liu J., Qian L., Caranasos T.G., Brudno Y., Ligler F.S., Cheng K. (2018) Platelet‐Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials  2018, 1803567.

60. Fleming N., Samsa L.A., Hassel D., Qian L. and Liu J. (2018) Rapamycin attenuates pathological hypertrophy caused by an absence of trabecular formation Sci Rep. 8,8584(2018)

59. Wang D., Hu X., Lee S.H., Chen F., Jiang K., Tu Z., Liu Z, Du J., Wang L., Yin C., Liao Y., Shang H., Martin K., Herzog R., Young L., Qian L. #, Hwa J. # and Xiang Y. # (2018) Diabetes exacerbates myocardial ischemia reperfusion injury by downregulation of microRNA and upregulation of O-GlcNAcylation. JACC Basic Transl Sci. 3, 350-362

58. Tang J., Cores J., Huang K., Cui X., Lan L., Zhang J., Li T., Qian L. and Cheng K. (2018) Is Cardiac Cell Therapy Dead? Embarrassing trial outcomes and new directions for the future. Stem Cells Transl Med. 7(4):354-359.

57. Vandergriff A., Huang K., Hensley M.T., Caranasos T.G., Qian L. and Cheng K. (2018) Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics. 8(7):1869-1878.

56. Zhou Y., Alimohamadi S., Wang L., Liu Z., Wall J.B., Yin C., Liu J. and Qian L. (2018) A Loss of Function Screen of Epigenetic Modifiers and Splicing Factors during Early Stage of Cardiac Reprogramming. Stem Cells Int. 2018:3814747. doi: 10.1155/2018/3814747.

55. Zuo S., Kong D., Wang C., Liu J., Wang Y., Wan Q., Yan S., Zhang J., Tang J., Zhang Q., Lyu L., Li X., Shan Z., Qian L., Shen Y.# and Yu Y. # (2018) CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol Med 10, e8237.

54. Sauls K.*, Greco T.M.*, Wang L., Zou M., Villasmil M., Qian L., Cristea I.M.and Conlon F.L. (2018) Initiating Events in Direct Cardiac Reprogramming. Cell Reports 22(7):1913-1922

53. Brown D., Samsa L.A., Ito C., Hong M., Batres K., Arnaout R., Qian L. and Liu J. (2018) Neuregulin-1 is essential for nerve plexus formation during cardiac maturation. J Cell Mol Med 22(3):2007-2017

52. Miyamoto K, Akiyama M, Tamura F, Isomi M, Yamakawa H, Sadahiro T, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tani H, Wang L, Qian L., Inoue M, Ide Y, Kurokawa J, Yamamoto T, Seki T, Aeba R, Yamagishi H, Fukuda K, Ieda M. (2018) Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell. 22(1):91-103.e5


51. Liu Z.*, Wang L.*, Welch J.*, Ma H., Zhou Y., Vaseghi H.R., Yu S., Wall J.B., Alimohamadi S., Zheng M., Yin C., Shen W., Prins J., Liu J.# and Qian L.# (2017) Single cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551(7678):100-104.

50. Zhou Y., Wang L., Liu Z., Alimohamadi S., Liu J. and Qian L. (2017) Comparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytes. Cell Reports 20(13):3014-3024.

49. Wang L., Liu J. and Qian L. (2017) In vivo Lineage Reprogramming of Fibroblasts to Cardiomyocytes for Heart Regeneration. In: In Vivo Reprogramming in Regenerative Medicine (Stem Cell Biology and Regenerative Medicine) (Yilmazer ed) Springer International Publishing AG. p45-63

48. Liu Z., Chen O., Wall J.B., Zheng M., Zhou Y., Wang L., Vaseghi H., Qian L.# and Liu J.# (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports 7, 2193 DOI:10.1038/s41598-017-02460-2

47. Vaseghi H, Liu J, Qian L. (2017) Molecular barriers to direct cardiac reprogramming. Protein & Cell. doi: 10.1007/s13238-017-0402-x. [Epub ahead of print]

46. Ma H., Wang L, Liu J. and Qian L. (2017) Direct cardiac reprogramming as a novel therapeutic strategy for treatment of myocardial infarction. Methods Mol Biol. 1521:69-88


45. Samsa, L.A., Cade, I.E., Brown D.R., Qian L. and Liu J. (2016). IgG-containing isoforms of Neuregulin-1 are dispensable for cardiac trabeculation in zebrafish.  Plos One 11(11):e0166734.

44. Liu L., Lei I., Hacer K., Li Y., Wang L., Gnatovskiy L., Dou Y., Wang S., Qian L. and Wang Z. (2016) Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discovery 2, 16036(2016) doi:10.1038/celldisc.2016.36

43. Zhou Y. and Qian L. (2016) Advanced Technologies Lead iNto New Reprogramming Routes Cell Stem Cell 19(3), 286-288

42. Ma H., Yin C., Zhang Y., Qian L. and Liu J. (2016) ErbB2 is required for cardiomyocyte proliferation in murine neonatal hearts. Gene 592(2), 325-330

41. Qian L. (2016) Hope for the brokenhearted: cellular reprogramming improves cardiac function in a mouse model of myocardial infarction. Science 352 (6292), 1400-1401

40. Vaseghi H., Zhou Y., Wang L., Yin C., Liu J. and Qian L. (2016) Generation of an inducible fibroblast cell line for studying direct cardiac reprogramming. Genesis 54 (7), 398–406

39. Ma H., Liu J. and Qian L. (2016) Fat for Fostering: Regenerating Injured Heart Using Local Adipose Tissue. EBioMedicine 7, 25-26

38. Brown D.R., Samsa L.A., Qian L. and Liu J. (2016) Advances in the study of heart development and disease using zebrafish. J. Cardiovasc. Dev. Dis. 3(2), 13; doi: 10.3390/jcdd3020013

37. Zhou Y., Wang L., Vaseghi H., Liu Z., Lu R., Alimohamadi S., Yin C., Fu J., Wang G.G., Liu J. and Qian L. (2016) Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18(3), 382-395.

36. Liu Z., Chen O., Zheng M., Wang L., Zhou Y., Yin C., Liu J. and Qian L. (2016) Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Research 16(2), 507-518.

35. Samsa L.A., Fleming N., Magness S., Qian L. and Liu J. (2016) Isolation and characterization of single cells from zebrafish embryos. J Vis Exp. (109), e53877, doi:10.3791/53877


34. Ma H., Wang L., Yin C., Liu J. and Qian L. (2015) In vivo cardiac reprogramming using an optimal single polycistronic construct. Cardiovasc Res108, 217-9

33. Samsa L.A., Givens C.S., Tzima E., Stainier D.Y., Qian L., and Liu J. (2015) Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation Development 142, 4080-4091; doi: 10.1242/dev.125724

32. Wang L., Liu Z., Yin C., Zhou Y., Liu J. and Qian L. (2015) Improved generation of induced cardiomyocytes using a polycistronic construct expressing optimal ratio of Gata4, Mef2c and Tbx5. J Vis Exp. (105), e53426, doi:10.3791/53426

31. Chen O. and Qian L. (2015) Direct Cardiac Reprogramming: Advances in Cardiac Regeneration. Biomed Res Int. 2015:580406. doi: 10.1155/2015/580406.

30. Qiang Z. and Qian L. (2015) Induced cardiomyocytes from non-myocytes for cardiac repair. Ch J Hypertens. 23, 206-209

29. Wang L., Liu Z., Yin C., Asfour H., Chen O., Li Y., Bursac N., Liu J. and Qian L. (2015) Stoichiometry of Gata4, Mef2c and Tbx5 influences the efficiency and quality of iCM reprogramming. Circ Res. 116, 237-244

28. Guo C., Deng Y., Liu J. and Qian L. (2015) Cardiomyocyte-specific role of miR-24 in promoting cell survival. J Cell Mol Med 19, 103-112


27. Fuller A.M. and Qian L. (2014) miRiad roles for microRNAs in cardiac development and regeneration. Cells 3(3), 724-750

26. Wang L. and Qian L. (2014) miR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes. Plos One 9(1):e85389


25. Bird K. and Qian L. (2013) Cellular reprogramming for cardiovascular disease. J Tissue Sci Eng. 4, 127

24. Guo C., Patel K. and Qian L. (2013) Direct somatic cell reprogramming: treatment of cardiac diseases. Curr Gene Ther. 13, 133-138.


Publications as a Trainee (2005-2012)

23. Fu J.D., Stone N.R., Liu L., Spencer C.I., Qian L., Hayashi Y., Delgado-Olguin P., Ding S., Bruneau B.G. and Srivastava D. (2013) Direct reprogramming of human fibroblasts toward the cardiomyocyte lineage. Stem Cell Reports 1, 235-247

22. Qian L. and Srivastava D. (2013) Direct Cardiac Reprogramming: From Developmental Biology to Cardiac Regeneration. Circ. Res. 113, 915-21

21. Qian L., Berry E.C., Fu J.D., Ieda M., and Srivastava D. (2013) Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc. 8, 1204-15

20. Srivastava D, Ieda M, Fu J, Qian L. (2012) Cardiac repair with thymosin β4 and cardiac reprogramming factors. Ann N Y Acad Sci. 1270,66-72.

19. Qian L., Huang Y, Foley A, Vedantham V, Spencer CI, Conway SJ, Fu JD, Srivastava D. (2012) In vivo reprogramming of murine cardiac fibroblasts into cardiomyocytes. Nature. 485, 593–598

18. Qian L. and Bodmer R. (2012) Probing the polygenic basis of cardiomyopathies in Drosophila J Cell Mol Med. 16, 972-7

17. Qian L.# *, Wythe J.D. *, Liu J., Ocoor K., Mohapatra B., Otway R.T., Fatkin D., Semsarian S., Winlaw D., Dunwoodie S., Vogler G., Cartry J., Huang Y., Crawley T., Taghli-Lamallem O., Srivastava D., Towbin J.A., Harvey R.P., Bruneau B.G., Bodmer R#. (2011) Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species  J  Cell Biol. 193, 1181-96

16. King I.N.*, Qian L.*, Liang J., Huang Y., Shieh J., Kwon C. and Srivastava D. (2011) A Genome-wide Screen Reveals a Role for microRNA-1 in Modulating Cardiac Cell Polarity. Developmental Cell  20, 497-510

15. Qian L.*, Van Laake LW. *, Huang Y. and Srivastava D. (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 208, 549-560

14. Van Laake L.W.*, Qian L.*, Cheng P., Huang Y., Hsiao E.C., Conklin B., Srivastava D. (2010) Reporter-Based Isolation of Induced Pluripotent Stem Cell- and Embryonic Stem Cell-Derived Cardiomyocytes Reveals Limited Gene Expression Variance. Circ. Res. 107:304–347 (Cover Paper)

13. Qian L. and Srivastava D. (2010) Monkeying around with cardiac progenitors. J Clin Invest. 120,1034-1036

12. Qian L. and Bodmer R. (2009) Partial loss of GATA factor Pannier impairs adult heart function in Drosophila. Hum Mol Genet. 18, 3153-3163

11. Kwon C., Qian L. *, Cheng P. *, Nigam V., Arnold J. and Srivastava D. (2009) A Regulatory Pathway Involving Notch1/β-Catenin/Isl1 Determines Cardiac Progenitor Cell Fate. Nat. Cell Bio. 11, 951-7

10. Leal S.M., Qian L., Lacin H., Bodmer R., Skeath J.B. (2009) Neuromancer1 and Neuromancer2 regulate cell fate specification in the developing embryonic CNS of Drosophila melanogaster. Dev. Biol. 325,138-50

9. Qian L., Mohapatra B., Akasaka T., Liu J., Ocorr K., Towbin J.A., Bodmer R. (2008) Transcription factor neuromancer/TBX20 is required for cardiac function in Drosophila with implications for human heart disease. P.N.A.S. 105,19833-8

8. Liu J., Qian L., Han Z., Wu X., Bodmer R. (2008) Spatial specificity of mesodermal even-skipped expression relies on multiple repressors. Dev. Biol. 313, 876-86

7. Qian L., Liu J. and Bodmer R. (2008) Heart development in Drosophila. In: Cardiovascular Development (Advances in Developmental Biology. Vol. 18) (Bodmer R. ed) Elsevier, Amsterdam, New York. p.1-29.

6. Ocorr K., Perrin L., Lim HY., Qian L., Wu X., Bodmer R. (2007) Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med. 17, 177-82.

5. Zaffran S., Reim I., Qian L., Lo P.C., Bodmer R. and Frasch M. (2006) Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development. 133, 4073-4083

4. Wang D., Qian L., Xiong H., Liu J., Neckameyer W.S., Oldham S., Wang J., Bodmer R. and Zhang Z. (2006) Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. P.N.A.S.103, 13520-13525 (Cover Paper)

3. Liu J., Qian L., Wessells RJ., Bidet Y., Jagla K., and Bodmer R. (2006) Hedgehog and RAS pathways cooperate in the anterior-posterior specification and positioning of cardiac progenitor cells. Dev.Biol. 290, 373-385

2. Qian L., Liu J., and Bodmer R. (2005) Slit and Robo control cardiac cell polarity and morphogenesis. Curr. Biol.15, 2271-2278

1. Qian L., Liu J., and Bodmer R. (2005) Neuromancer (H15/midline) T-box20-related genes promote cell fate specification and morphogenesis of the Drosophila heart.  Dev. Biol. 279, 509–524.

* equal contribution

# co-correspondance

NCBI link:

Comments are closed.